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The effects of abruptly applied cycles of curvatures and pressure gradients on 
turbulent boundary layers are examined experimentally. Two two-dimensional 
curved test surfaces are considered: one has a sequence of concave and convex 
longitudinal surface curvatures and the other has a sequence of convex and concave 
curvatures. The choice of the curvature sequences were motivated by a desire to  
study the asymmetric response of turbulent boundary layers to convex and concave 
curvatures. The relaxation of a boundary layer from the effects of these two opposite 
sequences has been compared. The effect of the accompanying Sequences of pressure 
gradient has also been examined but the effect of curvature dominates. The growth 
of internal layers at  the curvature junctions have been studied. Measurements of the 
Gortler and corner vortex systems have been made. The boundary layer recovering 
from the sequence of concave to convex curvature has a sustained lower skin friction 
level than in that recovering from the sequence of convex to  concave curvature. The 
amplification and suppression of turbulence due to the curvature sequences have also 
been studied. 

1. Introduction 
The flow over convex and concave surfaces can be expected to be stabilizing and 

destabilizing, respectively, based on the simple inviscid balance of angular 
momentum and radial pressure gradient (von KBrmSn 1934). At the same Reynolds 
number, decreased and increased radial mixing, compared to that on a flat surface, 
are therefore indicated in these two types of curvature. However, from this stability 
consideration alone, it is not clear that, for the same absolute value of the radius of 
curvature R ,  the amount of decrease or increase in any mixing-dependent variable 
like skin friction would be the same if the surface is convex or concave, respectively. 

Elsewhere (Bandyopadhyay 1986), an examination of the measurements of 
turbulent boundary layers over convex and concave surfaces carried out by 
Ramaprian & Shivaprasad (1977) and Prabhu, Narasimha & Rao (1983) indicated 
that a turbulent ‘boundary layer is slower to respond to  a concave curvature than 
to a convex’. This was termed ‘an asymmetric response of the boundary-layer large 
structures t o  external forces ’. This observation was made simultaneously by Muck, 
Hoffmann & Bradshaw (1985). Similar behaviour has been observed in positive and 
negative pressure gradients by Leontev & Fomichev (1983). Such an asymmetric 
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response is potentially useful in fluids engineering applications : for example, if a 
boundary layer is subjected to successive regions of equal concave and convex 
curvatures, it is likely to result in a lower viscous drag compared with that on a flat 
plate of equal length. The purpose of the present work is to verify this hypothesis. 

Since 1986, two computational efforts have also supported this hypothesis. 
Bandyopadhyay (1989) has computed turbulent boundary layers developing over 
convex and concave surfaces using the Richardson number formulation of the 
curvature effect on the equilibrium mixing length I,, (Prandtl 1929 ; Bradshaw 1969, 
1973; So 1975). The effective mixing length Zeff is then given by 

where a is the Bradshaw constant. In  both two-dimensional and axisymmetric 
bodies, the value of a was 7 in convex surfaces but 3 to 5 in concave surfaces. 
Asymmetric behaviour was clearly indicated. The origin of the asymmetric response 
can be seen by casting the Reynolds stress transport equations in a general 
orthogonal curvilinear coordinate system where the curvature terms appear 
explicitly (Gatski & Ravill 1989; Richmond, Chen & Patel 1986 and Nash & Patel 
1972). The equations were derived earlier by So (1975). Gatski & Savill’s derivation 
shows that the asymmetry comes from the  nonlinear interactions between the 
component transport equations. They examined the asymmetry directly by 
comparing a sequence of concave-to-convex with a sequence of convex-to-concave 
curvature. Although the modelling did not compute skin friction but only the 
anisotropy ratio at one point in the outer part of a homogeneous layer, it did 
demonstrate the asymmetric effect. 

When a flat-plate boundary layer encounters a convex surface, its skin friction 
drops. An attempt is being made to apply this behaviour, called the convex 
curvature concept of viscous drag reduction (Randyopadhyay 1990, 1989, 1986 ; 
Bushnell 1983), to axisymmetric nose bodies. In  the non-separating design, such a 
nose is characterized by sequences of concave-to-convex-to-flat surfaces applied 
repeatedly. Computations have shown that such a nose body leads to a lower viscous 
drag compared to a conventional elliptic nose of equivalent area (although not when 
compared based on volume). The modelling is fraught with difficulty because the lag 
behaviour of large eddies in the simultaneous presence of repeatedly applied complex 
strains of curvature, pressure gradient, lateral divergence and compressibility, is 
unknown. Therefore, it would be useful to conduct an experiment to verify the 
aforementioned hypothesis directly in the manner in which the application of the 
concept of viscous drag reduction is being envisaged, namely, a sequence of concave- 
to-convex curvature followed by a flat region of recovery from the low skin friction 
levels. 

A low-Reynolds-number incompressible flow experiment in an S-shaped wind 
tunnel is described. The two identical zero-pressure-gradient turbulent boundary 
layers developing on the opposite walls are subjected to two different sequences of 
longitudinal surface curvatures. In  one, a concave fetch is followed by a convex fetch 
whereas in the other, a convex fetch is followed by a concave fetch. The radii ( R )  and 
lengths (As) of all four curved regions are identical. The two boundary layers are then 
allowed to relax on flat walls under a zero pressure gradient. Detailed static pressure, 
mean velocity, skin friction and longitudinal turbulence measurements have been 
carried out. Particular attention has been paid to the measurement of the three- 
dimensional nature of curved boundary layers. The asymmetric response has been 
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studied from the points of view of both surface curvature and departure from 
equilibrium due to pressure gradient. 

There have been several experiments on S-shaped ducts (Rehman & Bowyer 1989; 
Schmidt, Whitelaw & Yianneskis 1987 and others). They simulate the inlets to the 
air-breathing propulsion engines which are installed a t  offset locations in aircraft. 
These ducts are diffusing over their entire length and curvature effects are negligible. 
Consequently, the turbulent boundary layers in these ducts undergo a very different 
history of complex strains compared to that in the present study. 

2. Details of the experiment 
2.1. Wind  tunnel 

A sketch of the wind tunnel constructed for this experiment is shown in figure 1. It 
is an open circuit tunnel where the air recirculates within the room, which is air 
conditioned. Air enters the tunnel through a fibreglass contraction cone which 
contains paper honeycomb and a series of three screens. The contraction entry cross- 
section is 38.1 x 38.1 em2. The nominal cross-section of the tunnel a t  the contraction 
exit is 25.4 cm (span) x 10.2 cm (width). The tunnel has four sets of test sections each 
50.4 ern in streamwise length (As). The boundary layer is tripped in all four walls at  
the end of the contraction. The trip wire diameter is 1.6 mm. The turbulent boundary 
layer is allowed to grow in the first flat length. This is followed by two curved lengths. 
The nominal radius of curvature R is also 50.4 cm in each curved length, being 
positive in the convex and negative in the concave walls. The second curved length 
is followed by another flat length of 50.4 ern where the recovery of the boundary 
layer from the effects of curvature and pressure gradient can be studied. After this 
region, there is a diffuser followed by a variable-speed centrifugal fan. Downstream 
of the contraction, in each of the four test lengths, the widths are enlarged by 5.1 mm 
to compensate for the boundary-layer growth. This amounted to an expansion of 
0.25' normal t o  each wall. 

As figure 1 shows, the curvature sequences were designated as follows in wall A, 
a flat length was first followed by a concave, then a convex fetch and finally a flat 
length; however, in wall B, a flat length was first followed by a convex and then a 
concave fetch which was followed by a flat length. 

Surface pressure taps were located nominally at 5 ern intervals along the centrelines 
of the two curved sides and also along the span and radial directions a t  two stations 
in the curved regions. The station numbers and streamwise (s) coordinates are given 
in table 1 .  A reference Pitot tube placed downstream of the contraction at station 
number 3 was used to monitor the tunnel speed. The experiments were conducted a t  
a reference free-stream speed of 9.0 m/s. 

2.2.  Measuremen,ts 
The static pressure taps were connected to two scanivalves controlled by a scanner. 
All pressures were read by 1 Torr head Barooel Transducers and Electronic 
Manometers whose voltage values were read by HP3456 Digital Voltmeters. 
Boundary-layer traverses were made using flattened single Pitot tubes of 0.318 mm 
outer thickness. A programmable traverse gear (Aerotech) controlled by a Personal 
Computer was used to move the probe. The traverse gear was backlash-free and the 
programming ability allowed it to be homed to preset near-wall posit<ions for 
repeated surveys. A cathetometer as well as a calibrated closed-circuit TV system was 
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Wall B 
Concave 

Reference 
Convex 

Flow 

Concave 

Inlet Wall A 

FTGURE 1. Sketch of the S-tunnel. All curved radii = 50.8 cm = length 
of each flat/curved .section. 

Station no. 3 4 5 6 7 8 9 11 12 13 
s' (mm) 127 177.8 228.6 279.4 330.2 381.0 431.8 539.8 590.6 641.4 
Surface + A, B: Flat ++ 

Station no. 
8 (mm) 
Surface 

Station no. 
8 (mm) 
Surface 

Station no. 

Surface 
(mm) 

14 15 16 17 18 19 
692.2 743.0 793.8 844.6 895.4 946.2 

A: Concave/B : Convex 

24 25 26 27 28 29 
1200 1251 1302 1353 1403 1454 

34 35 36 37 38 39 
1722 1773 1824 1875 1926 1976 

A : Convex/B : Concave 

A, B: Flat 

20 21 22 23 
997.0 1048 1099 1149.4 

30 31 32 33 
1505 1556 1607 1672 

++ 

+c 

40 41 
2027 2078 

TABLE 1. Measurement stations in walls A and B. 

used to determine the origin of surface-normal distances. Traverses were made 
normal to the surface. The skin friction measurements were made using Preston 
tubes of diameters ( d )  0.71, 1.45 and 2.0 mm. 

Consider a curvilinear coordinate system where s,  y and z represent distances along 
the streamwise, surface-normal and spanwise directions, respectively. The origins of 
s, y and x are respectively a t  the beginning of the first flat section, at  the surface and 
at the centreline. The symbol si is used for internal-layer growth studies and it 
represents a distance along s but measured from the beginning of a given flat or 
concave or convex section. The symbol As denotes the maximum value of si in a given 
section. The mean velocities are : U along s, Up the local potential velocity and Up, 
potential velocity at  the wall. The statistics of the fluctuating longitudinal velocity u' 
are denoted as follows: the symbols u and u3 stand for (u'2)i and z, respectively, 
where the overbars denote long time averaging. At the curved walls, local mean 
velocities were calculated from the following expressions (So & Mellor 1972, 1973) : 

and (4) 

where Pt, <,, and P, are the total Pitot pressure, local wall static pressure and total 
Pitot pressure in the potential core, respectively, and p is the fluid density. 
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Because of the presence of pressure gradients, the local coefficient of skin friction 
was defined in terms of the reference free-stream dynamic head. Thus a comparison 
in cf done here is effectively a comparison of the wall shear-stress values (7w). The 
coefficient was defined as follows : 

Cf = 2W(P7JL€!fL (5) 

where U, is the local friction velocity ( =  ( ~ ~ / p ) i )  and TJmref is the reference incoming 
free-stream velocity (9.0 m/s) measured a t  s = 127 mm (station 3) in the first flat 
section. The superscript + denotes non-dimensionalization by the wall-layer velocity 
scale U, and the lengthscale v/[J,, i.e. U+, y+ and u+. 

Hot-wire measurements were made using a DISA 55P11 single platinum-coated 
tungsten wire probe 1 mm in length and 5 pm in diameter. The wire was run by a TSI 
constant-temperature anemometer and a linearizer. The wire was calibrated in the 
free stream near the contraction exit. The wire output was digitized and analysed 
using a programmable Analogic Data 6000 analyser. Time records of hot-wire signals 
consisted of 1.65 x lo4 data points sampled at 20 kHz. All control and measurement 
instruments were placed on the GPIB bus of a Personal Computer which was used 
for data acquisition. The data analysis was carried out on other computers. 

3. Surface pressure distributions 
The local coefficient of pressure c p  was defined as 

where p is the local wall static pressure, p 3  is p a t  station 3 and p3 is free-stream 
dynamic head ( =  +pUi",,,,) a t  reference station 3. 

3.1. Streamwise 
The streamwise wall static pressure distribution is shown in figure 2 (a ) .  The spline- 
fit pressure gradient is shown in figure 2 ( b ) .  In  both walls, there are regions of zero 
pressure gradient in the two flat sections, namely where the flow initially develops 
and finally recovers, and also in a segment in each curved length. 

The figures show that, except in the regions of 'sustained' zero values of cp, the 
pressure and its first (and second) derivatives are not the mirror images of each other 
either in absolute values or in the location of their maxima and minima. 

3.2. Radial and spanwise 
The radial and spanwise surface pressure distributions were measured a t  two 
streamwise stations, namely after the onset of the first curvature and at the end of 
the second curvature. The curved wall span was positioned vertically for ease of 
traverse. The flat sidewalls lying in the radial direction were, therefore, the tunnel 
top and bottom walls. The static pressure taps were located along the upward span 
starting from the two opposite curved wall centrelines which met radially in the 
tunnel top wall. The measurements are shown in figure 3. 

Figure 3 ( a )  shows that the spanwise pressure distributions at  both convex walls 
are smooth and similar. However, the concave distributions are dissimilar; they are 
non-uniform near the corners and larger perturbations are present at wall B than at 
wall A. Spanwise skin-friction measurements presented in $6 show that at wall B at 
s = 1480 mm, the corner flows extend over most of the span. From a potential flow 
consideration, radially outward, the static pressure should increase linearly since the 

17 FLM 246 
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0 

- 150 
0 0.5 1 .o 1.5 2.0 2.5 

s (m> 
FIGURE 2. Longitudinal distributions of (a) mid-plane surface pressure and (b)  pressure 

gradient. Solid symbols, wall A ;  open symbols, wall R.  

boundary-layer thickness is small compared to the radius of curvature and figure 3 ( b )  
shows that it does so approximately. Particularly at s = 1480 mm, the radial 
distribution adjacent to the concave wall shows an early deviation from linearity 
unlike that near the corner with the convex wall. The longitudinal, spariwise and 
radial surface pressure distributions, therefore, show that the pressure hist,ories at  
the two curved walls are different. 

4. Longitudinal development of the boundary layer 
4.1. Sk in  friction 

The local values of cf were determined from the mean velocity profiles and Preston 
tube measurements. In the curved regions, frequently there were few data points in 
the measured velocity profile which were in the log layer. A modified Clauser method 
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was therefore used to determine cf from the measured velocity profiles (Ban- 
dyopadhyay 1988). A flat-plate zero-pressure-gradient velocity profile in wall-layer 
variables is universal in the viscous sublayer, buffer layer and log layer. For various 
perturbations considered below, the log layer may not exist. Therefore, the measured 
velocity profiles were closely fitted to an analytical form of this universal distribution 
to obtain the friction velocity U, from which cf was computed. However, the fit was 
sought for y-f 0 and not in the log layer. Several representative velocity profiles from 
each test section in the fitted wall-layer-variable form are shown in figure 4. Within 
the first flat regions, the entire inner layer displays the universal form. 

It is known that log-layer behaviour changes differently a t  separation and 
relaminarization. In  the former, the width of the log region decreases gradually while 
in the latter the profile departs from the log law abruptly. Hot-wire measurements 
have not indicated any relaminarization and tuft tests also indicated the absence of 

11.2 
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Station "1 $}Flat (a)  Wall A (b) Wall B 
3o Station 1 #}Flat 

O+-----,''' 10 10' ' ' ' " " d  10' o,--.'---- 10 10' 103 

.. 

.. 

Wall B 

10. 
' ' ' ' " I L 1  ' ' 

FIGURE 4. Mean velocity profiles in wall-layer variables : 
__-  , U + = 5 . 6 2 1 0 g ~ + + 5 . 0 ;  ----, U + = Y + .  

any separation. The maximum and minimum values of the pressure gradient 
parameter, d ( =  ( u / p p )  (dp/ds)) are 0.083 and -0.015, respectively. Separation and 
onset of the relaminarization process can be expected when A > 0.09 and < -0.018, 
respectively (Patel 1965). The present values are within these limits. 

The log law occupies a central position in the description of a turbulent boundary 
layer. The effects of low Reynolds number, curvature and the existence of unusually 
large scales in the outer layer on the log law in the present flow need to be discussed. 
(The effects of pressure gradient on the log law have already been considered.) In 
zero-pressure-gradient flat-plate boundary layers, the lowest Reynolds number at  
which a log layer has been reported to exist are as follows. A regular (see figure 4) 
distinct log law with a universal wall layer has been reported in the experiments 
carried out a t  Re, = 500 by Purtell, Klebanoff & Buckley (1981), a t  Re, = 617 by 
Erm, Smits & Joubert (1985) and at Re, = 354 by Smits, Matheson & Joubert (1983). 
In the numerical simulation works of Tsai & Leslie (1990), a log law appears a t  
Re, = 505, and at  670 in those of Spalart (1988). It is believed that a regular log law 
first appears at 300 <Re,  < 500. I n  the present work, Re, > 500 downstream of 
port 3. Therefore, in the flat regions before the curved fetches, the boundary layer 
is expected to grow to one with a regular and distinct log law. Figure 4 shows that 
it does so. 

Since the present Re, values are high enough, the departures from the log law in 
the present data are not due to low-Reynolds-number effects. In  the curved channel 
simulation work of Moser & Moin (1987), a t  about the same Reynolds number, the 
velocity profile remains below the log law over the concave surface and it moves 
above the log law over the convex surface. Therefore, in the present data, t,he 
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FIGURE 5. Longitudinal centreline skin friction distributions. 

departures above and below the log law in the convex and concave regions, 
respectively, are due to curvature. Finally, the velocity profile is known to depart 
from the log law even on a flat surface when the outer layer contains large scales 
(Smits, Young & Bradshaw 1979). These large scales appear over and after a concave 
fetch (Moser & Moin 1987) and after a flow reattachment as in a backward-facing 
step. I n  the present data, in the final flat region, particularly at wall B, the departure 
from the log law can be ascribed to the large-scale longitudinal vortices in the corners 
and those formed by the upstream concave curvatures. In  corroborating evidence to 
be presented in $8, these regions, where the mean velocity dips below the log law, are 
characterized by an amplification of the u-turbulence intensity indicating the 
presence of a large-scale mixing mechanism. The present departures from the log law 
are therefore primarily representative of curvature effects. 

The longitudinal distributions of the centreline skin friction are shown in figure 5 .  
The modified Clauser and all Preston tube measurements compare well except in the 
later part of the flat recovery section on wall B where the 2.0 mm diameter Preston 
tube data are inaccurate because the U,d/v  value of 50 is larger than 30, the local 
thickness of the universal region. 

If the effect of pressure gradient is ignored, a t  wall A the wall shear stress should 
drop in the initial flat section up to s = 500 mm because of increasing Ree, should 
increase for 500 < s < 1000 mm because of concave curvature, should drop for 
1000 < s < 1500 mm due to convex curvature and then increase to the local 
flat-plate equilibrium level in the flat region s > 1500 mm. On the other hand, 
based on pressure gradient alone (figure 2 b ) ,  the wall shear stress should drop for 
0 < s < 900 mm (dplds 3 0 ) ,  increase for 900 < s < 1300 (dp/ds < 0) and decrease 
thereafter. In  the measurements, wall shear stress drops for s < 600 mm, increases 
for 600 < s < 1200 mm, drops for 1200 < s < 1750 mm and rises thereafter. So, in 
the two curved regions, curvature effects dominate pressure gradient effects. 

The secondary effect of the pressure gradient is as follows. The drop in r, in 
500 < s < 600 mm in spite of concave curvature is attributable to dp/ds > 0 or to an 
inherent slow response in the onset of concave curvature or due to both. This lag 
length is about 62.58, = 46,, where the subscript f denotes the value of the variables 
(equation (8)) at the end of the flat length. In  the region 900 < s < 1000 mm, both 
dp/ds and curvature indicate an increase in rw and it does so. Owing to the presence 
of a spanwise Gortler roll structure, a concave turbulent boundary layer can be 
considered to have a longer memory compared to that for dp/ds 2 0 or for flat and 
convex curvatures. Now, a convex curvature is known to lower r, immediately (So 
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& Mellor 1972, 1973) when preceded by a flat-plate boundary layer with dp/ds = 0 
and it is likely to behave similarly when dp/ds < 0 also. Therefore, for 1000 < s < 
1200 mm, the increase in 7, in spite of the onset of convex curvature is attributable 
both to the memory effect of the Gortler roll cells of the previous concave region and 
to  dp/ds < 0. This lag length is about 808, = 6.6Sc where the subscript c denotes the 
value a t  the end of the concave region. However, the continued drop in 7, after the 
removal of convex curvature for 1500 < s < 1750 mm seems due to dp/ds > 0 alone. 

The skin friction distribution along wall B can also be analysed similarly. 
Considering curvature effects alone, 7, should drop at a slow rate in the flat region 
0 < s < 500 mm increasing to  a faster rate in the convex region 500 < s < 1000 mm, 
should increase in the concave region 1000 < s < 1500 mm and then drop a t  a slow 
rate for s > 1500 mm. Based on pressure gradient alone (figure 2 6 ) ,  7, should drop 
slowly for 0 < s < 300 mm because dp/ds = 0, should increase for 300 < s < 700 mrn 
because dp/ds < 0, should decrease for 700 < s < 1500 mm because dp/ds 2 0, 
increase for 1500 < s < 1800 mm because dp/ds < 0 and then for s > 1800 mm, 
should decrease slowly a t  a rate characteristic of a flat-plate zero pressure gradient. 
On the other hand, the measurements show that 7, drops for 0 < s < 1200 mm at 
three rates: at an initial rate for 0 < s < 300 mm which slows down for 300 < s < 
600 mm and then drops at  the highest rate for 600 < s < 1200 mm. I n  the range 
1200 < s < 1750 mm, r, increases rapidly and then drops for s > 1750 mm. Therefore, 
in the curved regions, the skin friction behaviour is, primarily, curvature dominated. 

The secondary effect of the pressure gradient is as follows. The virtual arrest of the 
7w drop in the flat region 300 < s < 500 mm and in the initial convex region 500 < 
s < 600 mm is due to dp/ds < 0. I n  the initial concave region, 1000 < s < 1200 mm, 
the continued drop in skin friction is attributable both to dp/ds > 0 and to the higher 
time constant for the onset of concave curvature effects. I n  the flat-wall range 1500 
< s < 1750 mm, r, continues to rise not only due to dplds < 0 but also quite 
probably due to  the long lifetimes of the pre-existing longitudinal large-scale 
vortices. 

I n  figure 5(a),  the streamwise skin friction distributions a t  both walls are 
compared with the flat-plate zero-pressure-gradient distribution. The latter was 
calculated using the Schultz-Grunow relationship, namely cf = 0.37[10g (Re,)]-2.5", 
where Re, = [U,(s+ 17.98 cm)/v] (Schlichting 1979, p. 643). The virtual origin, 
located 17.98 ern upstream of s = 0, was estimated by matching the measured skin 
friction a t  s = 33.02 em. This also agrees with figure 6,  I n  the final flat region, the 
wall A distribution lies below the flat-plate values and the relaxation is incomplete. 

The nett pressure and viscous friction drags have been calculated using the 
centreline local pressure and skin friction distributions, shown in figures 2 (a) and 5 
respectively, and the spanwise skin friction distributions shown later in figure 9. The 
two-dimensional pressure drag coefficient is defined as Cdp.= [ j o y p ( s )  dfl/(p3Lc), 
where is the projected distance in the vertical direction, Y is the overall vertical 
offset due to a curved fetch and L, is the reference curved length of 50.8 cm. The 
values of C,, are : wall A (concave : 1.12 x and wall B 
(convex : 0.95 x Thus, the total pressure drag is nearly 
the same (within 1 %) in both walls. The three-dimensional friction drag is defined 
as C,, = [ T,(s, z )  dA,]/[q,(L 190 mm)] where A ,  is the projected surface area in the 
axial direction, being integrated over the span -95 < z < 95 mm, and L is the 
reference length of 152.4 cm, which is the sum of the two curved lengths and the final 
flat length of recovery. Assuming a two-dimensional flow, the value of C,, at the flat 
wall is 0.0038. Taking the three-dimensional flow into account, the values of G,, are 

and convex : 0.93 x 
and concave: 1.08 x 
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FIGURE 6. Overall distributions of the centreline boundary-layer integral quantities : 
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0.0028 at wall A and 0.0032 at wall B. Thus, the wall A friction drag is 12 % below the 
wall B friction drag. Since the relaxation in the final flat region is far from complete, 
given a longer relaxation length, the friction drag in wall A will be comparatively 
even lower. Also note that in the present work, the geometries of the concave and 
convex fetches are identical because the purpose is to document the asymmetric 
response. However, in an actual drag reduction application, the concave fetches 
would be far less than the convex fetches. 

4.2. Integral quantities 
Mean velocity profiles were measured on both walls A and B along the centreline and 
the boundary-layer integral quantities, viz. displacement thickness (a*), momentum 
thickness ( O ) ,  shape factor ( H )  and Reynolds number Re, were calculated from those. 
These quantities were defined as follows: 

6” = l ( l - U / U e ) d y ,  

U/Ue(l-U/Ue)dy, 

H = S * / O ,  (9) 

Re, = UeO/v, (10) 

where U, is the edge velocity obtained from (2) and v is the kinematic viscosity of the 
fluid. The subscript 0 denotes values a t  si = 0 and 6 denotes the value of y where 
1J = O.995Ue. 

The overall distributions of these quantities at  walls A and B are shown in figure 
6. At both walls, in those parts of the two flat regions where dplds M 0, H is nearly 
constant. This implies a relaxation toward equilibrium. At both walls, the early 
concave and convex regions have an adverse and a favourable pressure gradient, 
respectively. At wall B, the lengthscales increase much more rapidly in the adverse- 
pressure-gradient region where the maximum amplitude is higher than that at  
wall A. 

4.3. Defect projiles 
The defect profiles are shown in figure 7 where each flat or curved section is grouped 
separately. In  the first flat sections, although the profiles appear to have collapsed, 
a closer scrutiny reveals that  there is a very weak but systematic variation with s. 
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With few exceptions, in the curved regions the profiles cross a t  a characteristic value 
of y/8. This height, namely yJB, is 4.2 to 4.5 in the curved regions. An observer at 
y = yo while convecting downstream at GU, where c, is 0.87 to 0.93, will find the 
following. If the surface is concave, at a given y/B, where y/B < y,/B, the fluid 
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accelerates downstream, whereas at  an y/8 where y/8 > y,/B, the fluid decelerates. 
The trend is opposite in the convex fetch: with increasing s, the fluid decelerates 
where y/8 < y,/B but accelerates where y/8 > yJ8. Figures 4 and 18 similarly show 
that the strength of the wake component, which is a measure of the energy of the 
outer large eddy, increases in the convex and decreases in the concave fetch. The 
curvature-based demarcation of the accelerating and decelerating layers at  a 
constant y/O is intriguing. 

5. Effects of pressure gradient 
The Clauser parameter C for a velocity profile can be defined as 

The characteristic value of G is 6 to 7 in a zero-pressure-gradient equilibrium 
turbulent boundary layer. The departure and return to equilibrium can be described 
in a (a, &plane where P is the ratio of pressure to friction forces given by 

P = (&*IT,) (dP/d4. (12) 

The (G, P) trajectories in figure 8 show three features. (i) The value of C reached is 
6 in the first flat fetch but, it is far from equilibrium in the final flat section, 
particularly a t  wall A. A much longer recovery section was clearly required. (ii) The 
flat junctions are within 0 < /3 < 1 a t  wall A and within - 1 < P < 0 at wall B. In  
wall A, the concave-to-convex junction is located near the minimum value of /3, 
whereas in wall B the convex-to-concave junction is located near the maximum value 
of /3. (iii) In  the largest loops (A : 7-8-9 ; B : 3-4-5-6), the departure from equilibrium 
(outgoing trajectories A(7-8) and R ( 3 4 ) )  is linear, but the return (incoming 
trajectories A(8-9) and B(4-5-6)) is nonlinear. This can be termed an hysteresis of 
the large eddies. The linear nature of the departure from equilibrium has also been 
observed in a weakly adverse-pressure-gradient flat-plate boundary layer relaxing 
from the perturbation due to a drag-reducing outer-layer device (Bandyopadhyay 
1986). A similar but weaker hysteresis is present in the -P loop as well. The 
importance of the sign of dplds t o  the large-eddy response was recognized by Nash 
(1965). To model relaminarizing and separating turbulent boundary layers 
accurately, in addition to P, the effect of dplds should also be considered. 

6. Three-dimensional nature of the curved boundary layers 
The spanwise distributions of the local skin friction coefficient defined with respect 

to the reference dynamic head a t  station 3, are shown in figure 9. These measurements 
have been carried out with Preston tubes of diameter 0.71 mm. These measurements 
have been analysed (i) to determine if the non-uniformities are Gortler-like and (ii) 
to compare the growth characteristics of the corner vortices a t  the two walls. 

6.1. Gortler vortex 

The laminar Gortler number Go can be defined as 
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Similarly, the turbulent Gortler number can be defined by replacing Y by v,, where 
vT is the turbulent eddy viscosity. The value of V ,  can be calculated from Clauser’s 
(1956) relationship : vT = O.OlSU, S*. If h (em) is the wavelength of the spanwise non- 
uniformities in cf, the wavenumber a in 2n (om) is then given by 27c/h. The 
amplification rate is given by b. 

The spanwise non-uniformities in the concave surfaces marked on figure 9 are 
compared in figure 10 with Tani’s (1962) and So & Mellor’s (1975) measurements on 
concave surfaces in zero-pressure-gradient turbulent boundary layers. The mea- 
surements are also compared with Smith’s (1955) theory. The present measurements 
are in the unstable region and the trend in odz agrees with others. 

The present turbulent measurements are compared with Tani’s (1962) laminar 
measurements in figure 11. The trend in [U,R/(v  or v,,.)] [.R]-1*5 is correct. 

6.2. Corner vortex 
If cf increases as a corner is approached while traversing along span, a (positive) 
corner vortex is assumed to exist. (Negative corner vortices, defined similarly, are 
mostly weaker and have not been studied.) To define the sizes of the corner convex, 
Azl and Ax, denote spanwise distances from the left and right corners (figure 9), 
respectively, to the location of the first trough in the cf-distribution. The strength 
is defined as the difference between the cf values at x = & 95 mm and that at Ax, and 
Az,, as the case may be. The streamwise growth of the size and strength of the corner 
vortices are shown in figure 12. Convex curvature can allow some amplification, but 
eventually it suppresses positive corner vortices and replaces them with negative 
vortices (figure 9a). However, positive corner vortices appear in the flat regions and 
primarily in the concave region of wall B. At both walls, the strength increases where 
dp/ds is positive (cf. figure 2 b ) .  Initially, the strength increases with the size. At wall 
B, the drop in the strength while the size stabilizes is attributable to - dp/ds. The size 
and strength of the corner vortices in the concave and flat regions are determined by 
dp/ds. 
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6.3. Phase plot of the spanwise non-uniformities 
Figure 13 shows phase plots of the longitudinal vortex systems. The (s, z )  locations 
of the crests and troughs in the cf-distributions are marked by the symbols + and - , 
respectively. The crests and troughs were determined from the change in sign of 
dcf/dx which was calculated linearly using neighbouring measurements. 

Figure 13 shows two features. (i) The corner vortex extends over a greater region 
on wall B. The presence of the convex region between the concave and the final flat 
lengths on wall A causes a weaker corner vortex system. (ii) The origins of the regions 
marked corner flows are also the locations of a phase reversal. 

At wall B, there are two sources of three-dimensionality, namely the corner flow 
and the Gortler vortices in the mid-region of the curved wall originating in the 
concave fetch. Although the corner vortex covers a large extent of the span, after a 
rapid initial growth its size stabilizes (figures 12 and 13). I ts  spanwise encroachment 
stops a t  about s = 1200 mm, where the Gortler vortices also stabilize (figure 9 b ) .  The 
following summary of results (i-vi) show that the curvature effects are just as clear 
in the mid-region of wall B. (i) The asymptotic convex curvature effect is reached at 
both walls (see collapse of walls A and B with the zero-pressure-gradient asymptote 
in figure 18a, to be introduced later). (ii) I n  figure 6, the integral lengths grow linearly 



Turbulent boundary layers subjected to multiple curvatures 519 

with a common virtual origin in the final flat regions. (iii) In  figure 8, the value of G 
at wall B has nearly returned to the zero-pressure-gradient flat-plate level. (iv) 
Figure 17(b), introduced later, shows that a new internal layer has formed a t  the 
concave-final flat region junction as expected in spite of the corner flow. (v) Figure 
5 ( a )  shows that, in the final flat region, the rate of relaxation of cf to the two- 
dimensional flat-plate level a t  walls A and B are similar. As a consistency check, walls 
A and B data cross over the flat-plate line at roughly the same streamwise locations. 
(vi) Finally, the Gortler wave lengths of wall B follow the right trend in spite of the 
corner vortex flows (figures 10 and 11). The conclusion therefore is that, for wall B, 
the corner flow and the mid-region Gortler flow are autonomous and have reached an 
equilibrium level of coexistence. 

7. Internal layers 
Table 2 is a summary of the outer- and inner-layer curvature parameters at the 

curvature junctions. When a convex curvature perturbation is suddenly applied to 
a flat surface, an internal layer grows when ARvIU, > 0.373 x lop4 where AR = 

(l /R2- l /Rl),  R, and R, being the radii of curvature on two sides of the curvature 
junction (Baskaran, Smits & Joubert 1987). Computations show that, in curved 
flows, internal layers are more difficult to recognize in velocity profiles (U versus y )  
than in Reynolds stress and turbulent kinetic energy (Kim 1989). 

Before Baskaran et al.’s work, the effect of convex curvature was commonly 
described by the outer layer parameter 6/R. An asymptotic curvature effect is 
produced when 6,/R > 0.05 (Gillis & Johnston 1983; Bandyopadhyay 1986). 
Bandyopadhyay (1990) has shown that the above-mentioned outer- and inner-layer 
parameter limits for the strong curvature effect are reached simultaneously. 

Since timescales are small near a wall, it can be expected to respond to a wall 
perturbation before the outer layer. An internal layer can be expected to grow near 
a wall starting a t  a large local curvature discontinuity. The velocity profile in such 
a layer will depend on (T,, y ,  a )  where a = &/ay. Dimensional considerations show 
that aU/ay - (a/y)i. If a is a constant within the layer, integration yields U - yt 
(Antonia & Luxton 1971 ; Townsend 1976, p. 302). 

Figure 14 shows the velocity profiles in (U ,  y); coordinates in the four curved 
regions. In  all of them, as y -+ 0, dU/dy:+ constant values. In  the two convex regions, 
there is an additional layer where dU/dyi is constant whose thickness also grows 
downstream. 

7.1 .  S k i n  friction f rom internal-layer considerations 

The fact that a is a constant within the near-wall internal layer can also be verified 
from the measurements of -m given in figure 12 of Antonia & Luxton (1971). These 
data further show that these constant values of d( -m)/dy within the internal layers 
vary with s in the same manner as 7, does. In  other words, $(dU/dyi)2 cc T, where 
~ + r ,  as y+O and the constant of proportionality has the dimension of length. 
Assuming that the same value ofthe length constant applies at  all stations on both 
walls, its value was obtained by calibrating the internal-layer slope data against the 
local cf value at one station. The friction coefficient calculated from the internal-layer 
slope data is then given by cfi = &p[(dU/d~i)~] C/q,, where C = 0.0125 mm. Figure 15 
shows that the values of cfi compare qualitatively with the cf versus s data. Since cfi 
is derived from the square of the slope, some scatter is to  be expected. The physical 
significance of the length constant is not clear. Interestingly, the estimates of skin 
friction could be obtained without any recourse to the log layer and in a flow where 
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Flat-to- Flat-to- Concave-to- Convex-to- Convex-to- Concave-to- 

Wall A Wall B Wall A Wall B Wall A Wall B 
0.0385 0.0385 0.0657 0.055 0.0657 0.135 
0.7328 0.7284 1.508 1.8554 0.949 0.844 

Junction concave convex convex concave flat flat 

43lR 
LWVIU, x lo4 

TABLE 2. Curvature parameters at curvature junctions. 

the external condition is changing suddenly and repeatedly. The main point however 
is that this shows directly that thin near-wall internal layers form at each curvature 
junction. 

7.2. EJfects of curvature on outer-layer lengthscales 
The outer-layer profiles of dU/dyi in the curved lengths are shown in figure 16. On 
wall A, the effect of the convex curvature is to shrink the thickness of the layer where 
the slope is constant. In the convex section of wall B, the constant-a layer hardly 
moves. In  contrast, in the concave regions of both walls, the location of peak or 
constant a grows with s. 
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The streamwise distributions of these outer-layer thicknesses are shown in figure 
17. For wall A, the growth rate exponent is 0.72 in the concave and final flat regions 
although there is a convex stretch in between. The same growth rate is also found in 
the internal layer formed at  a smooth-to-rough surface junction on a flat wall at  zero 
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pressure gradient (Bandyopadhyay 1987; Antonia & Luxton 1971). At wall B also, 
the growth rates have their origin at  the curvature junctions although the exponent 
is lower and higher than 0.72 in the concave and final flat stretches, respectively. 

7 3. Wake component and skin-friction 
The streamwise distributions of the strength of the wake component, which is the 
maximum deviation from the law of the wall (figure 4), for the curved lengths are 
compared in figure 18. The wake component eventually increases and decreases in 
the convex and concave walls, respectively, as it is known to. For the two walls, the 
convex rates are identical but the concave rates are not. The convex distributions 
attain the asymptotic level for zero pressure gradient (AU+ - 6.7 log (s,/S,) known to 
be reached at SIR >0.05 (Bandyopadhyay 1986). The rapid rise beyond the 
asymptote towards the end of the convex fetch occurs in a positive dp/ds region 
which is known to have such an effect. 

The skin friction distributions in each section are shown in figure 19 in internal- 
layer coordinates. The drop rates are identical for the convex walls. However, the rise 
rate is slightly higher for the concave fetch of wall B. In  figure 19, the asymmetric 
response can best be seen by comparing the concave fetch in wall A with the convex 
fetch in wall B since they have a similar upstream flat plate. The characteristic 
curvature response for the concave length takes twice as long to appear. In figure 5 ,  
both concave walls show an s-delay of 100 to 200 mm before rising. The delay in the 
convex B wall is small ( < 100 mm) ; the convex A wall has a larger delay (225 mm) 
before the characteristic drop but then it is preceded by a concave fetch. The 
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response time of curvature has also been discussed by Barlow & Johnston (1988) and 
Muck et al. (1985). 

8. Longitudinal turbulence intensity and diffusion 
The profiles of u-turbulence intensity and its longitudinal flux were measured in 

the mid-plane at one station approximately toward the end of each section. The 
turbulence and its flux are shown in wall-layer coordinates in figures 20 and 21, 
respectively. To track the active turbulence longitudinally, the surface-normal 
distances are stretched by a factor, j- @,/I?, where 0, and 8 are momentum 
thicknesses a t  the final (s = 2063.75 mm for wall A and 2078.04 mm for B) and local 
stations, respectively. The intensity and flux are shown in figures 22 and 23, 
respectively, in the stretched coordinates. In  the outer parts of both walls, the 
suppression of turbulence intensity due to CODVBX curvature and the amplification 
due to concave curvature are marked in Agure 22. The turbulenoe amplification takes 
place in the region where the mean velooity dips below the log law (figure 4). After 
the convex section in wall A, the intensity amplification at  fy' N 150 (marked 
by arrow in figures 20a and 22a) and its broadening with downstream recovery 
(si/So = 0.96 and 16.2, respectively in the Anal flat length) are present in the recovery 
measurements at  si/So = 4 and 17, respeotively of Alving, Smits & Watmuff (1986, 
figure 10a) following a 90' convex turn. They called this a 'stress bore'. The wall B 
profile at  the first recovery station after the concave fetch ( s  = 1652 mm) also 
contains a similar high stress region at fy' - 50. It is not clear if the bores originate 
at the final curvature-to-flat junctions. 
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FIQURE 22. u-tmbulence profiles in stretched y-coordinates. Symbols in (a ,  b )  are as in 
figure 20(a, b ) ,  respectively. 
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FIQURE 23. Profiles of longitudinal flux of the u-turbulence intensity in stretched y-coordinates. 

Symbols in (a,  b )  are as in figure 20(a, b ) ,  respectively. 

In figure 23, the markings show that, in the outer region where the streamwise 
transport is associated with a deceleration, ( u 3 / q (  increases and decreases due to 
concave and convex curvatures, respectively. In the two recovery stations in figure 
21(a) ,  the data points are connected by a solid line in the region where the 
acceleration/deceleration carrying out the flux changes sign. The crossovers are very 
sharp compared to that in a typical flat-plate boundary layer (s = 431.8 mm, for 
example). They are located in the high stress region mentioned earlier. 

9. Conclusions 
Experiments have been carried out in two turbulent boundary layers subjected to 

abrupt changes in the external conditions such as curvature and pressure gradient. 
The flow geometry has its origin in the convex curvature concept of viscous drag 
reduction. In particular, the two curvature sequences and the curvature parameters 
have been chosen to determine the drag-reducing effects of the asymmetric response 
of turbulent boundary layers to concave and convex curvatures. The curvature 
parameters have been kept large. 

The turbulent boundary layer on wall A, which is recovering from a sequence of 
concave-to-convex curvature, has a sustained lower skin friction in the final flat 
recovery section than that on wall B where the  recovery is from a sequence of 
convex-to-concave curvature. The recovery on A is not complete a t  the last 
measurement station where sJB, w 100. 
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Taking the three-dimensional flow into account, the nett wall A friction drag is 
lower than that on the wall B by 12%. 

The wall sheaf stress trend could be computed from the mean velocity profile 
within a thin internal boundary layer near the surface. However, 7, values do not 
change exactly a t  the curvature junction. When the preceding section is flat, the 
delay is z 150 mm in a concave wall but < 100 mm in the convex wall. 

The spanwise non-uniformities in the concave regions agree with the Gortler 
stability diagrams if kinematic viscosity is replaced by turbulent eddy viscosity. 

The corner vortices extend over most of the flow field on wall B unlike that on wall 
A. The growth of the corner vortex is accompanied by an increasing spanwise non- 
uniformity in the skin friction. The phase reverses in the corners. 

The defect profiles show the existence of an interesting curvature-characteristic 
layer a t  a constant y/B ( =  4.2 to 4.5) which demarcates the downstream gradient of 
the vertical shear. 

When the pressure gradient is large, the departure and return to equilibrium 
display an hysteresis-like effect on large eddies. The departure from equilibrium with 
increasing pressure gradient is linear in character but the return to equilibrium 
during the withdrawal of pressure gradient is nonlinear. 

After perturbation, the outer-layer lengthscales show the following characteristic 
trends for each flat recovery and curved section. They grow in the concave and final 
flat recovery regions. For wall A, the growth rate is akin to that in internal layers due 
to a smooth-to-rough surface perturbation but, for wall B, it  is not. However, the 
growth is suppressed (for wall A) or marginally changes (for wall B) in the convex 
walls. 

In  both convex regions, the strength of the wake component reaches the zero- 
pressure-gradient asymptotic limit. However, in the concave fetches, the streamwise 
drop is much faster for wall B. 

In  the outer layer, the amplification and suppression of u-turbulence intensity take 
place on the concave and convex walls, respectively. They are accompanied by 
decreased and increased streamwise flux, respectively. The flat-wall recovery for 
wall A displays a thin high stress region at y+ - 80 where the flux also changes sign 
sharply. A similar near-wall high stress region is present in the recovery section of 
wall B also. 
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